SUSPENSION OF OPGW

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Suspension Clamp</td>
</tr>
<tr>
<td>+</td>
<td>Protecting under layer</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>With EPDM Cushioned Armour grip type Suspension clamp</td>
</tr>
<tr>
<td>+</td>
<td>Armor-rod</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>EPDM Cushioned Armour grip type Suspension Clamp</td>
</tr>
<tr>
<td>+</td>
<td>Protecting under layer</td>
</tr>
<tr>
<td>+</td>
<td>Armor-rod</td>
</tr>
</tbody>
</table>
VIBRATION DAMPER

- Cable Attachment Clamp
- Damper Masses
- Messenger Wire
DOWNLEAD CLAMP ON TOWERS
OPGW JOINT BOX MOUNTING
OPGW SUSPENSION ASSEMBLY & DEAD END ASSEMBLY
Accessories : Tower Bypass

The temporarily secured cable is routed round the tower using a curved support and is then secured permanently.
CLAMPS

AGS Type Suspension Clamp Rounded Thimble with Guy Grip
Live-Line OPGW Installation

- Laving the pulling rope with the help of pulley
- Tightening the pulling rope
- Slacking the existing earth wire
- Removing the existing earth wire and leading OPGW in
- Tightening the OPGW
- Recovery of the pulley

Existing Earth Wire
Pulling Rope
New OPGW Cable
Outdoor Optical Joint Box
Transmission properties of cabled fibers

<table>
<thead>
<tr>
<th></th>
<th>Premium</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersion or Back scatter pattern</td>
<td>Optical fiber are homogenous, not spliced. So, there is not the possibility of reflections or irregularities of more than 0.10 dB where maximum pulse length is 50ns at the -10dB pulse level and resolution of 1 meter.</td>
<td></td>
</tr>
<tr>
<td>Attenuation coefficient (dB/km)</td>
<td>@1310nm ≤ 0.34</td>
<td>@1550nm ≤ 0.21</td>
</tr>
<tr>
<td></td>
<td>@1625nm ≤ 0.24</td>
<td></td>
</tr>
<tr>
<td>Bandwidth or Cut off wavelength (MHz-km)</td>
<td>Premium</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>@850nm ≥ 600</td>
<td>≥400</td>
</tr>
<tr>
<td></td>
<td>@1300nm ≥ 1000</td>
<td>≥600</td>
</tr>
</tbody>
</table>
Properties of filling compound

- Silicon free, electrically non conductor.
- Prevent formation of gaseous hydrogen within the loose tube.
- Maintain its water resistance over the operating temperature.
- Free from air entrapments.
Overhead Fiber Optic Cable Test

Cable Characteristics test
- Creep Test
- Stress Strain Test
- Strain Margin Test
- Ultimate Tensile Strength Test
- DC Resistance Test

Installation Test
- Sheave Test
- Crush Test
- Bend Test
- Twist Test

In-service Test
- Aeolian Vibration Test
- Galloping Test
- Short Circuit Test
- Lightning Test
- Water Ingress Test
- Seepage of flooding Compound Test
- Temperature Cycle Test
- Salt Spray Corrosion Test
Tensile strength test

- Optical fiber can handle a tensile strength test of $\geq 0.7\text{GPa}$, maintained for 1 second with a minimum elongation of 1.1%.

Tubing/Buffering

What happens to attenuation?